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    Topics    
• Enhanced Reversed-Shear (ERS) regime

• High internal-inductance (High-l i) plasmas at high current

• Scaling of fusion reactivity and confinement between D and D-T

• Alpha-particle physics
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Increased Stability Can Extend D-T Performance and
Studies of Alpha-Particle Physics

TFTR

• TFTR D-T experiments:

- Effects of tritium on plasma confinement

- Validating ability to project D-T performance in future

- Alpha-particle physics

Require high T concentrations and high fusion reactivity.

• TFTR supershot regime is limited by stability

• Two routes to increased stability by modifying current profile:

- Reversed shear in core, q0 > 1

- Increase internal inductance, q0 < 1
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Experiments in 1996 Have Explored Two Advanced 
Regimes With High Confinement

• Both regimes have NBI fueling, low edge recycling, peaked profiles and Ti > Te
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• Location of transport barrier in ERS phase moves with ρmin

Lower qa and Higher Current Ramp Rate Increased 
Region of Shear Reversal and ERS Confinement

TFTR

Start of high-power NBI phase ERS phase

Reduced
De, χi 
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• Challenge: control barrier location 

and shape of q-profile near ρmin

Natural Evolution of Pressure and q Profiles Reduces 
-Limit During ERS Phase at High Current

TFTR

• Large pressure gradient inside ρmin 

persists even in "postlude" phase

• qmin, ρmin both decrease with time

S. Batha, 4F.04; E. Fredrickson, 6IB.01

• β-limit is reduced as qmin → 2

• βN = 2.0, β*N = 4.1 achieved at 1.6MA
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• Power threshold for ERS appears to increase with plasma current

• Lithium pellet at start of HP-NBI necessary to stimulate ERS at 2.2MA

• Suggests an issue for helium ash transport in ignited ERS plasmas

E. Synakowski; A. Ramsey, 1S.12
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• Transition threshold also depends on wall conditioning

• Challenge for theory: same or lower threshold expected

• Experiment: develop tools to trigger and control at lower power

Higher NB Power Required for ERS Transition in D-T
TFTR

S. Scott, 1S.13

Range of threshold
power for D-only
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• Confinement during NBI increased by lithium pellet conditioing

Expansion of Ultra-Low-q Discharge Reliably Produces 
High-li  Plasma

TFTR

q
a

∆li

Expansion

S. Sabbagh, 4F.02; E. Fredrickson, 6IB.01
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• β-limit was not reached with available NBI power in 2.3MA high-li plasmas

Normalized -Limit Scales   li in Expansion Plasmas
TFTR

2.0MA, -68kA, high li, 3 Li pellets
2.5MA, -73kA, supershot, 2 Li pellets

S. Sabbagh, 4F.02; E. Fredrickson, 6IB.01
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• Axes are "universal": independent of plasma size or configuration 

Supershot (≥2MA)
High li
ERS (1.6MA)

• H-mode increases plasma energy without significantly contributing to reactivity

DIII-D NCS (H-mode)

JT-60U High βP (H-mode)

JET Hot-ion H-mode

JET Optimised Shear

JT-60U RS

DD Fusion Power Density is Closely Related to Plasma 
Energy Density Over Range of Regimes in TFTR

∝〈W〉1.8

TFTR
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Optimal D-T mixture: 0.35 ≤ PT-NBI/PNBI ≤ 0.85 
High-current supershots and high-li plasmas

∝〈W〉1.8

∝〈W〉1.7

JET-PTE*

*50:50 D:T projection [Nuclear Fusion 32 (1992) 187]

×110–120 at
const. 〈W〉

×130–150 at
const. PNB

×165 at
max. PNB

 Theoretical:
230 at const. W  for 
optimal thermal DT

Reactivity Ratio Between D and D-T Plasmas Depends on
Plasma Regime and Operational Constraints

• Higher Ip, BT were needed to exploit higher PNB and τE in D-T

TFTR



Energy Confinement Scales A1/2 In D-T 
With H-Minority ICRF Heating

TFTR
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No Isotope Effect on  E  in Reverse Shear Plasmas
TFTR

• Challenge: plasma profiles (ne, Te, Ti ) are similar to supershots

S. Scott, 1S.13
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• Average ion mass (amu):  ~1.9 (D),  ~2.5 (D-T)

D-T Isotope Effect Depends On Operating Regime
TFTR

• Challenge for theoretical interpretation and to gyro-Bohm scaling

S. Scott, 1S.13
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• "Core localized TAE" predicted by theory (Fu, Spong) for weak shear with q0 > 1

• Mode becomes unstable for very low βα (<< ITER)

R. Nazikian, 4F.08; Z. Chang, 8IB.02
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 Summary
TFTR

• ERS physics:

• Requires controlling transport barriers and q profiles for improved stability

• Power threshold higher in D-T

• Impurity retention: potential helium ash problem

• High-li regime:

• Extended to high current by new technique

• βN ∝ li continues to hold

• Substantial D-T fusion power: 8.7MW

• D-T physics

• Reactivity ratio DT:DD depends on complex constraints

• Isotope effect different in reversed-shear plasmas

• Isotope effect in ICRF heated L-mode

• First observation of the alpha-driven TAE in D-T plasmas



TFTR Has Operated Safely and Productively
through an Extensive D-T Campaign

• Since first D-T operation in December 1993:

- 1.2 GJ D-T fusion energy (4.2 × 1020 D-T neutrons)

- 841 D-T shots for wide range of experiments

• D-T operation routine

- Recently completed vacuum vessel opening (first in 3 years)

- Installed new ICRF antennas

• Tritium technology issues for fusion

- Retention and removal of tritium

- Commissioned Tritium Purification System for closed-loop tritium cycle

• Future operation is not limited by technical constraints of D-T



Plans
TFTR

• Exploit new ICRF capabilities

- Ion Bernstein Wave launcher for triggering and controlling transport barriers

- 4-strap FW launchers for control of current drive by mode-converted IBW

• New diagnostic capabilities for physics of confinement enhancement

- poloidal rotation

- improved MSE measurement

• New techniques for lithium conditioning

- extend enhancements already achieved with pellets

- use 6Li for less interference with ICRF heating

•  “Radiating plasma mantle” for improved performance at high power

• Alpha particle physics

- Elements of “alpha-channeling” scheme


